

Intoxicaciones por plantas y micotoxinas en rumiantes diagnosticadas en Uruguay

Plant and mycotoxin poisonings in ruminants diagnosed in Uruguay

García y Santos C1*, Capelli A1

- 1- Laboratorio de Toxicología, Departamento de Patología, Facultad de Veterinaria, UdelaR, Montevideo, Uruguay.
- *Autor de correspondencia: Carmen García y Santos: cgarciaysantos@gmail.com

Veterinaria (Montevideo) Volumen 52 N° 201 (2016) 28-42

Resumen

Las intoxicaciones por plantas y micotoxinas ocasionan importantes pérdidas económicas en países pecuarios, principalmente por muertes de animales y mermas en la producción. Este trabajo fue realizado con el propósito de brindar al veterinario que actúa en el diagnóstico de enfermedades de animales productivos, información breve y accesible sobre las intoxicaciones por plantas y micotoxinas diagnosticadas en rumiantes de Uruguay. Para llevar a cabo el mismo se utilizaron como fuentes bibliográficas: revistas científicas arbitradas, tesis de grado, libros y comunicaciones en congresos, jornadas nacionales e internacionales. Se encontraron 37 géneros y 45 especies de plantas tóxicas, distribuidos en 20 familias botánicas. En cuanto a los hongos toxicogénicos, se hallaron 13 especies pertenecientes a 9 géneros de 6 familias diferentes. Entre las plantas diagnosticadas, la familia Asteraceae (Compositae) cuenta con la mayor cantidad de especies tóxicas, seguida por Gramineae, Solanaceae y Fabaceae (Leguminoseae). Los principales géneros de hongos toxicogénicos Aspergillus, Penicillium, Fusarium y Claviceps han sido diagnosticados en el país. Desde el punto de vista patológico, las plantas y micotoxinas hepatotóxicas resultaron ser las más numerosas. La información presentada en las tablas, permitirá a los veterinarios un fácil abordaje en esta temática.

Palabras clave:

Plantas tóxicas, Micotoxicosis, Rumiantes, Uruguay

Summary

Poisoning by plants and mycotoxins are the cause of significant economic losses in countries dedicated to cattle farming, mainly due to the death of animals and lower production. To control and prevent poisonings, it is essential to know the clinical signs and lesions produced by plants and mycotoxicosis. The aim of this study was to provide brief and accessible information to the practitioner making diagnosis on farm animals, about poisonous plants and mycotoxins commonly found in diagnosing ruminants in Uruguay. In order to carry out this work we used as reference sources: peer-reviewed journals, undergraduate degree thesis, books, seminars and conference communications. A total number of 37 genera and 45 species of toxic plants belonging to 20 botanical families were found. About toxicogenic fungi, 13 species belonging to 9 genera of 6 different families were found. Among the diagnosed plants, most of them belong to the Asteraceae (Compositae) family, followed by the Gramineae, Solanaceae and Fabaceae (Leguminoseae) families. The main genres of toxigenic fungi Aspergillus, Penicillium, Fusarium and Claviceps have been diagnosed in the country. From a pathological perspective, hepatotoxic plants and mycotoxins were the most numerous. The information presented as tables will provide veterinarians an easy approach to this subject.

Recibido: 4/10/2015

Aceptado: 10/12/2015

Keywords:

Toxic plants, Mycotoxicosis, Ruminants, Uruguay

Introducción

La importancia del conocimiento de las plantas tóxicas radica en dos aspectos fundamentales, uno relacionado a las pérdidas económicas por muertes y disminución de producción temporaria o permanente y el otro referido al conocimiento específico de las intoxicaciones que provocan (Tokarnia y col., 2000). Las pérdidas económicas relacionadas con plantas tóxicas, pueden ser directas e indirectas. Las directas se deben a muertes de animales, disminución de producción e índices reproductivos. Las indirectas incluyen gastos de diagnóstico y tratamiento de animales enfermos, control de plantas y manejo de las tierras entre otras (Riet-Correa y Medeiros, 2000; Odriozola, 2003). La falta de definición de planta tóxica desde el punto de vista pecuario, hace que numerosas plantas sean incorrectamente consideradas como tales. En este sentido, Tokarnia y col. (2000) definen planta tóxica de interés pecuario, aquella que ingerida en condiciones naturales por animales domésticos, causa daños a la salud, incluso la muerte, debiéndose comprobar experimentalmente su toxicidad.

El diagnóstico de las intoxicaciones por plantas, lo puede realizar el veterinario de campo que conoce las plantas tóxicas de su región y los cuadros clínico-patológicos asociados a estas. El mismo, se basa en los datos epidemiológicos, clínicos y patológicos, identificación botánica y análisis químicos de las plantas (Tokarnia y col., 2000). La necropsia es fundamental para la confirmación o corrección del diagnóstico, siendo muchas veces la única forma de llegar al diagnóstico correcto. Los signos clínicos observados en un animal enfermo, corroborados en la necropsia y colecta de material para estudios posteriores, son una herramienta de diagnóstico imprescindible para el veterinario que actúa en el diagnóstico de enfermedades de rumiantes (Peixoto y Barros, 1998).

En Uruguay, los Laboratorios de Diagnóstico de la Dirección de Laboratorios Veterinarios (DILAVE), estiman en un 10% los casos reportados debido a la ingestión de plantas tóxicas en bovinos en el Laboratorio Regional Noroeste de Paysandú y de 16% para el Laboratorio Regional Este de Treinta y Tres. En ovinos los porcentajes de casos reportados, son de 11% en la región noroeste y 15% en el este. Se reconocen 31 especies vegetales tóxicas de importancia pecuaria en nuestro país (Rivero y col., 2011a). Sin embargo en los últimos años, el aporte de las tesis de grado de la Facultad de Veterinaria, ha incrementado el número de plantas tóxicas reconocidas, algunas de estas incluídas en el trabajo de Rivero y col. (2011a) y otras estudiadas posteriormente. La toxicidad de plantas como Sessea vestioides (Figura 1) (Alonso y col., 2006), Quercus robur (Arruti y col., 2007), Senecio grisebachii (Monroy y Preliasco, 2008), Lathyrus hirsutus (Figura 2) (Aldecoa y col., 2010), Senecio madagascariensis (Arrospide y col., 2010), Melia azedarach (Alonso y Luzardo, 2011), Cestrum parqui (Bauzá y col., 2012) ha sido comprobada experimentalmente en bovinos. Mientras que en ovinos Nierembergia rivularis (Figura 3) (Etcheberry y col., 2008), Phytolaca dioica (Iriarte y col., 2011), Wedelia glauca (Figura 4) (Bertucci y Parietti, 2011), Nerium oleander (Albanell y col., 2013), Sessea vestioides (Domínguez, 2013) y Vernonia plantaginoides (Costa y col., 2014) son las especies tóxicas comprobadas.

Figura 1. Sessea vestioides. Salto

Figura 2. Lathyrus hirsutus. Canelones

Figura 3. Nierembergis rivularis. Rivera

Figura 4. Wedelia glauca. Montevideo

Cuadro I. Plantas y micotoxinas hepatotóxicas

Nombre vulgar	Nombre científico	Familia	Principio active	
Duraznillo negro	Cestrum parqui	Solanaceae	CATs ^a	_
Abrojo grande	Xanthium cavanillesii	Asteraceae	CATs	
Yuyo sapo	Wedelia glauca	Asteraceae	CATs	
Palmera enana	Cycas revoluta	Cicadaceae	Cycasina	
Linillo paraguayo	Sessea vestioides	Solanaceae	Desconocido	
Mio-mio moro	Vernonia plantaginoides	Asteraceae	Desconocido	
Yuyo primavera	Senecio brasiliensis	Asteraceae	APs^b	
María mole	Senecio selloi	Asteraceae	APs	
María mole	Senecio grisebachii	Asteraceae	APs	
Margarita de campo	Senecio madagascariensis	Asteraceae	APs	
Flor morada	Echium plantagineum	Boraginaceae	APs	
Borraja -	Erechtites hieraacifolia	Asteraceae	APs	
Transparente	Myoporum laetum	Scrophulariaceae	Furanosesquiterpenos	
Yerba del toro	Lythrum hyssopifolia	Lytraceae	Desconocido	
Cola de alacrán	Heliotropium elongatum	Boraginaceae	APs	
Banderita española	Lantana camara	Verbenaceae	Lantadenos A y B	
Hongo de la pradera	Pithomyces chartarum	Dematiaceae	Esporidesmina	
Aflatoxicosis	Aspergillus flavus	Trichomaceae	Aflatoxinas	
Avena*	Avena spp.	Gramineae	Desconocido	
Raigrás*	Lolium multiflorum	Gramineae	Desconocido	

^aCATs: carboxiatractilosídeos; ^bAPs: alcaloides pirrolizidínicos; ^cF: fotosensibilización; *brotes de fotosensibilización hepatógen

Cuadro tóxico	Especies afectadas	Zona del país	Referencias
Necrosis centrolobulillar	Bovinos	Todas	Riet y col., 1979
Necrosis centrolobulillar	Bovinos	Este y sur	Riet-Correa y col., 1996;
Necrosis centrolobulillar	Bovinos	Oeste	Sosa, 2015 Rivero y col., 2010;
Necrosis centrolobulillar	Ovinos Bovinos	Este	Bertucci y Parietti, 2012 Riet-Correa y col., 1996
Necrosis centrolobulillar	Bovinos	Norte	Alonso y col., 2006;
Necrosis centrolobulillar	Ovinos Ovinos	Este	Domínguez, 2013 Costa y col., 2014
Fibrosis difusa	Bovinos	Todas	Podestá y col., 1977
Fibrosis difusa	Bovinos	Este y sur	Podestá y col., 1977
Fibrosis difusa	Bovinos	Noroeste	Monroy y Preliasco, 2009
Fibrosis difusa	Bovinos	Todas	Arrospide y col., 2010
Fibrosis difusa	Bovinos	Sur	Riet y col., 1977
F. hepatógena ^c Fibrosis difusa	Bovinos	Este	Riet-Correa y col., 1996
F. hepatógena	Bovinos	Sur y este	García y Santos y col., 2008
F. hepatógena Nefrotóxico	Bovinos	Este	Capelli y col., 2007
F. hepatógena	Bovinos	Este	Dutra, 2010b
F. hepatógena	Bovinos	Oeste y sur	Rivero y col., 2011b
F. hepatógena	Ovinos Bovinos	Sur	Riet y col., 2000
Fibrosis	Bovinos	Noroeste	Riet y Días, 1974 Lafluf y col., 1989
F. hepatógena F. hepatógena	Bovinos	Sur	Capelli y col., 2012
F. hepatógena	Bovinos	Sur	Capelli y col., 2012

na en pastoreo de avena y raigrás de etiologia desconocida

Muchas de las plantas diagnosticadas, son tóxicas cuando se contaminan con hongos toxicogénicos como Aspergillus, Penicillium, Fusarium y Claviceps. Estos géneros pueden producir metabolitos secundarios de bajo peso molecular conocidos como micotoxinas (Bullerman y Draughon, 1994). Estos metabolitos, además de contaminar pasturas, pueden encontrarse en granos, raciones y otros suplementos utilizados en la alimentación animal. Existen cientos de estas toxinas, responsables de intoxicaciones que provocan un fuerte impacto en la salud pública y animal e importantes pérdidas en el sector productivo agropecuario (Hollinger y Ekperigin, 1999). En Salud Pública, el riesgo se debe principalmente al consumo de cereales, carne, leche y sus derivados contaminados principalmente por aflatoxinas B, y M, y por zearalenona (Peers v col., 1976; Sundolf v Strickland, 1986; Mallmann y col., 1994). Las pérdidas de producción y el deterioro en la salud animal, sumadas a las restricciones impuestas por los países importadores de alimentos, pérdidas en las cosechas contaminadas y/o elevados costos de desintoxicación, son importantes y no bien evaluadas en el sector agropecuario. Es por eso que el diagnóstico de las micotoxicosis, es fundamental para establecer medidas terapéuticas, de control y preventivas (Whitlow y Hagler, 2002).

Debido a los problemas en la salud humana y animal, pérdidas económicas y errores de diagnóstico que ocurren en intoxicaciones por plantas y micotoxinas, se hace imprescindible el reconocimiento de estas enfermedades. En este sentido, el objetivo del trabajo fue acercar al profesional veterinario, información precisa y breve de las plantas tóxicas y micotoxinas asociadas a forrajes, diagnosticadas en rumiantes de Uruguay.

Cuadro II. Plantas y micotoxinas que afectan el sistema digestivo

Nombre vulgar	Nombre científico	Familia	Principio activo	Cuadro tóxico
Mío-mío	Baccharis coridifolia	Asteraceae	Ttrichotecenos	Gastroenteritis
Romerillo			macrocíclicos*	
Linillo	Nierembergia	Solanaceae	Niermbergina Hipomanina	Gastroenteritis
Chucho violeta Ombú	hippománica Phytolacca dioica	Phytolaccaceae	Desconocido	Gastroenteritis
Paraíso	Melia azedarach	Meliaceae	Tetranortriterpenos	Gastroenteritis
Trébol rojo	Trifolium pratense	Fabaceae	Proteinas solubles	Multisistémica Meteorismo espumoso
Trébol blanco	Trifolium repens	Fabaceae	Proteinas solubles	Meteorismo espumoso
Alfalfa	Medicago sativa	Fabaceae	Proteinas solubles	Meteorismo espumoso
Achicoria	Cichorium intybus	Asteraceae	Bajos % MS y fibra	Meteorismo gaseoso
				Sobrecarga

^{*}Roridinas, verrucarinas y miotoxina producidas por los hongos Myrothecium roridum y M. verrucaria; MS: materia seca

Las especies vegetales y fúngicas se presentan agrupadas de acuerdo a los cuadros clínico-patológicos que producen para facilitar el abordaje de esta temática. Es así que se incluyeron 8 cuadros, con nombres vulgares y científicos de plantas y hongos, familia a la que pertenecen, principios activos, cuadros tóxicos, especies animales afectadas, zonas donde han sido diagnosticadas y las referencias encontradas en la bibliografía consultada. Los 7 primeros cuadros contienen intoxicaciones por plantas y micotoxinas diagnosticadas, el último presenta plantas sospechosas de producir intoxicaciones, cuyos resultados experimentales fueron negativos.

La bibliografía consultada está disponible en Biblioteca de Facultad de Veterinaria y en Internet. La mayoría de las referencias presentadas en los cuadros, son conferencias o comunicaciones de jornadas nacionales, tesis de grado de la Facultad de Veterinaria y en menor número, artículos publicados en revistas.

Conclusiones

En Uruguay hasta el momento hay identificados 37 géneros y 45 especies de plantas tóxicas distribuidos en 20 familias botánicas.

Los hongos toxicogénicos diagnosticados en nuestro país, pertenecen a 9 géneros y 13 especies de 6 familias diferentes.

La familia botánica Asteraceae, es la que tiene mayor cantidad de especies asociadas a intoxicaciones, seguida por las familias Gramineae, Solanaceae y Fabaceae.

Los cuadros patológicos hepatotóxicos son los más numerosos, con 16 intoxicaciones por plantas y 2 micotoxicosis diagnosticadas.

Especies afectadas	Zona del país	Referencias
Bovinos	Todas	Riet-Correa y col., 1987
Bovinos Ovinos	Noroeste	Odini y col., 1995
Ovinos	Noroeste	Iriarte y col., 2011
		• ,
Bovinos	Noroeste	Alonso y Luzardo, 2011
Bovinos	Todas	Moraes y col., 1993
Bovinos	Todas	Moraes y col., 1993
Bovinos	Todas	Moraes y col., 1993
Bovinos	Noroeste	Rivero y col., 1989

Cuadro III. Plantas y micotoxinas neurotóxicas

Nombre vulgar	Nombre científico	Familia	Principio activo
Pasto miel	Paspalum dilatatum	Gramineae	Indol diterpenos ^a
Pasto horqueta	Paspalum notatum	Gramineae	Indol diterpenos ^a
Pasto Bermuda	Cynodon dactylon	Gramineae	Indol diterpenos ^b
Alpiste	Phalaris spp.	Gramineae	Alcaloides de triptamina
Raigrás anual	Lolium multiflorum	Gramineae	Indol diterpenos ^c
Naranjillo	Solanum bonariense	Solanaceae	Desconocido
-	Halimium brasiliense	Cistaceae	Desconocido
Linillo Chucho violeta	Nierembergia hippománica	Solanaceae	Niermbergina Hipomanina
	4 11 1	T. 1	No. 1. 12.
Tallarín remolacha	Aspergillus clavatus	Trichomaceae	Metabolitos tremorgénos ^d
Cáscara cebada	Penicillium spp.		

 $^{{\}it ^a} Micotoxinas\ de\ Claviceps\ paspali;\ {\it ^b} Micotoxinas\ de\ Claviceps\ cynodontis;\ {\it ^c} Micotoxinas\ de\ Nethypodium\ lolli;\ {\it ^d} Micotoxinas\ (patulina,\ triptoqual trip$

Cuadro IV. Plantas nefrotóxicas, que causan intoxicación fitógena por cobre y hematuria enzoótica

Nombre vulgar	Nombre científico	Familia	Principio activo
Yuyo colorado	Amaranthus quitensis	Amaranthaceae	Nefrotoxina desconocida
Anagálide	Anagallis arvensis	Primulaceae	Desconocido
Roble	Quercus robur	Fagaceae	Taninos hidrolizables
Trébol	Trifolium spp.	Fabaceae	Cobre
Helecho común	Pteridium aquilinum	Poypodiaceae	Ptaquilósido

Cuadro tóxico	Especie afectada	Zonas del país	Referencias
Síndrome Tremorgénico	Bovinos	Todas	Riet y col., 1976
Síndrome Tremorgénico	Bovinos	Todas	Riet y col., 1976
Síndrome Tremorgénico	Bovinos	Sur	Riet y col., 1977
Síndrome tremorgénico	Ovinos	Sur	Perdomo y Paullier, 1986
Síndrome Tremorgénico	Bovinos	Noroeste	Moraes y col., 2007
Síndrome Cerebeloso	Bovinos	Oeste	Verdes y col., 2006
Síndrome Convulsivo	Ovinos	Este	Riet-Correa y col., 2009
Incoordinación	Ovinos	Noroeste	Cairús y col., 2014
Síndrome Tremorgénico	Bovinos	Sur	Riet y col., 1987a
			Riet y col., 1986
İ			

ivalina, triptoquivalona, nortriptoquivalona) de Aspergillus y Penicillium spp.

Efecto tóxico	Especie afectada	Zona del país	Referencias
Necrosis tubular renal	Bovinos	Este	Dutra y col., 1993
Edema perirrenal	Bovinos Ovinos	Noroeste	Rivero y col., 2001
Edema perirrenal	Bovinos	Este	Dutra y col., 2014
Ictericia Hemoglobinuria	Ovinos	Noroeste	Rivero y col., 1989
Hematuria enzoótica	Bovinos	Este	Dutra, 2010a

Cuadro V. Plantas hematotóxicas y plantas que afectan el sistema respiratorio

Nombre vulgar	Nombre científico	Familia	Principio activo	
Raigrás	Lolium multiflorum	Gramineae	Nitritos	
Avena	Avena spp.	Gramineae	Nitritos	
Trigo	Triticum spp.	Gramineae	Nitritos	
Sorgo	Sorghum spp.	Gramineae	Glucósidos cianogénicos	
Boniato enmohecido	Ipomoea batata	Convulvulaceae	Furanoterpenoides*	
Fiebre de la niebla	Lolium mulriflorum Trifolium y Lotus spp.	Gramineae Leguminoseae	D,L-triptofano	

^{*}Toxinas de Fusarium solani

Cuadro VI. Plantas cardiotóxicas, calcinogénicas y osteolatirógenas

Nombre vulgar	Nombre científico	Familia	Principio activo	
Laurel rosa				
Adelfa	Nerium oleander	Apocynaceae	Glucósidos cardiotóxicos	
Duraznillo blanco	Solanum glaucophyllum	Solanaceae	Vitamina D_3	
Estrellita de las vegas	Nierembergia rivularis	Solanaceae	Desconocido	
Arvejilla	Lathyrus hirsutus	Fabaceae	β aminopropionitrilo	

Cuadro tóxico	Especie afectada	Zona del país	Referencias
Metahemoglobinemia	Bovinos	Todas	Riet-Correa y col., 1987
Metahemoglobinemia	Bovinos	Todas	Riet-Correa y col., 1987
Metahemoglobinemia	Bovinos	Todas	Riet-Correa y col., 1987
Hipoxia celular	Bovinos	Todas	Riet-Correa y col., 1987; García y Santos y Riet, 2004
Neumonía intersticial	Bovinos	Noroeste	Rivero y Feed, 1993
Neumonía intersticial	Bovinos	Este	Dutra, 2010c

Cuadro tóxico	Especie afectada	Zona del país	Referencias
Falla cardíaca	Bovinos Ovinos	Noroeste	Riet-Correa y col., 1996 Albanell y col., 2013
Calcinosis enzoótica	Bovinos Ovinos	Este y sur	Riet-Correa y col., 1975 García y Santos y col., 2007
Calcinosis enzoótica	Ovinos	Norte	García y Santos y col., 2012
Osteolatirismo	Bovinos	Sur	Aldecoa y col., 2010 García y Santos y col., 2011

Cuadro VII. Plantas y hongos que afectan piel y otros órganos

Nombre vulgar	Nombre científico	Familia	Principio activo
Falsa visnaga	Ammi majus	Umbeliferae	Furocumarinas psoralenos
Raigrás anual	Lolium multiflorum	Gramineae	Ergoalcaloides de <i>Claviceps</i> purpurea
Festuca	Festuca arundinacea	Gramineae	Ergoalcaloides de Neothypodium coenophialum
Síndrome salivación	Rhizoctonia leguminícola*	Corticiaceae	Eslaframina
Восора	Ramaria flavo-brunescens	Clavariaceae	Desconocido

^{*}Hongo patógeno de Trifolium pratense y Medicago sativa

Cuadro VIII. Plantas sospechosas de intoxicación, con resultados experimentales negativos

Nombre vulgar	Nombre científico	Familia	Principio activo	
Pasto blanco	Digitaria sanguinalis	Gramineae	Desconocido	
Cola de zorra	Setaria geniculata	Gramineae	Desconocido	
Menta poleo	Mentha pulegium	Lamiaceae	Desconocido	
Gamba rusa	Alternanthera philoxeroides	Amarantaceae	Desconocido	
Mío-mío blanco	Baccharis ochracea	Asteraceae	Desconocido	

Cuadro tóxico	Especie afectada	Zona del país	Referencias
Fotosensibilización primaria, dermatitis	Bovinos	Sur	Riet y col., 1975
Ergotismo Hipertermia	Bovinos	Sur	Riet y col., 1987b
Ergotismo Hipertermia	Bovinos	Sur y este	Riet-Correa, 1993
Salivación, lagrimeo	Bovinos	Noroeste	Riet-Correa y col., 2013
Laminitis, salivación Nervioso	Bovinos Ovinos	Todas	Freitas y col., 1966 Rivero y col., 2011 ^a

Cuadro sospechado	Especie afectada	Zona del país	Referencias
Fotosensibilización	Bovinos	Centro	Gastambide, 2011
Fotosensibilización	Bovinos	Centro	Gastambide, 2011
Respiratorio	Bovinos	Este	Aramendía y col., 2011
Fotosensibilización	Bovinos	Sur	Dietrich y col., 2013
Gastroenteritis	Bovinos	Este	Menéndez y col., 2013

Referencias bibliográficas

- Albanell S, Bonino JA, Leguisamo E. (2013). Estudio de la toxicidad de *Nerium oleander* en ovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Aldecoa C, Franco C, Moreira G. (2010). Intoxicación experimental por *Lathyrus hirsutus* en bovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 3. Alonso M, Bianchi J, Núñez J. (2006). Intoxicación por *Sessea vestioides* en bovinos de Uruguay. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 4. Alonso MF, Luzardo S. (2011). Investigación sobre la toxicidad de Melia azedarach (paraíso) en bovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 5. Aramendía ME, Hareau M, Miranda DM. (2011). Investigación sobre la toxicidad de *Mentha pulegium* en bovinos del Uruguay. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 6. Arrospide J, Lorenzelli J, Monteverde J. (2010). Determinación de la toxicidad de *Senecio madagascariensis* para bovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 7. Arruti F, Ferrés J, Trelles M. (2007). Intoxicación experimental por Roble (*Quercus spp.*) en bovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Bauzá JP, Carrasquera CG, Pujolar ME. (2012). Comprobación de la toxicidad de las hojas de *Cestrum parqui* en dos períodos del año en bovinos del Uruguay. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 9. Bertucci A, Parietti M. (2011). Investigación sobre la toxicidad de *Wedelia glauca* en ovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 10. Bullerman L, Draughon F. (1994). *Fusarium monili- forme* and fumonisin symposium-introduction. J Food Protection 57:523.
- 11. Cayrús LF, de Grossi A, Fajardo J. (2014). Investigación sobre la toxicidad de *Nierembergia hippomanica* para los ovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Capelli A, Domínguez R, Sosa S, Moratorio G, García y Santos C. (2012). Fotosensibilización hepátogena en bovinos pastoreando avena y raigrás. IV Congreso AUPA. Veterinaria (Montevideo) 48 Supl 1:187.
- Capelli A, Pereira R, Dominguez R, Arago S, Pérez W, Alonso E, García y Santos C. (2007). Brote de fotosensibilización hepatógena en bovinos en Rocha. V Jornadas Técnicas de Veterinaria. Facultad de Veterinaria, Montevideo, Uruguay. P 169.
- 14. Costa RA, Da Fonseca JM, Paiva I. (2014). Intoxicación experimental por *Vernonia plantaginoides* (less.) hieron en ovinos". Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.

- Dietrich CV, Martinez M, Soca C. (2013). Intoxicación experimental por *Alternanthera philoxeroides* en terneros Holando. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Domínguez R. (2013). Intoxicación por Sessea vestioides en ovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 17. Dutra F, Romero A, Trelles MP, Arruti F, Ferrés JA, Quinteros C. (2014). Intoxicación espontánea y experimental por *Quercus robur* ("roble europeo") en bovinos en Uruguay. Veterinaria (Montevideo) 50:34-48.
- 18. Dutra F. (2010a). Archivo Veterinario del Este. Año 2 (1):7-8. Hematuria enzoótica bovina (*Pteridium aquilinum*). www.mgap.gub.uv/DGSG/DILAVE/Dilave
- 19. Dutra F. (2010b). Archivo Veterinario del Este. Año 2 (2):6-7. Fotosensibilización hepatógena (*Heliotropium elongatus*). www.mgap.gub.uy/DGSG/DILAVE/Dilave
- Dutra F. (2010c). Archivo Veterinario del Este. Año 2 (2):9. Neumonía intersticial atípica. www.mgap.gub.uy/ DGSG/DILAVE/Dilave
- Dutra F, Lewin E, Paiva N. (1993). Necrosis tubular tóxica y edema perirrenal en bovinos asociado a la ingestión de *Amaranthus quitensis*. Veterinaria (Montevideo) 28:4-11
- 22. Etcheberry G, Goyen J, Pereira R. (2008). Intoxicación por *Nierembergia rivularis* en ovinos del Uruguay. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 23. Freitas de J, Pasturino CL, Quiñones-Sowerby CA, Bellagamba C, Giambruno E, Infantozzi JM, Décia W, Cerveñanzky W. (1966). Comunicación sobre una enfermedad aparecida en ganados del Uruguay en los últimos años (Bocopa). 5º Congreso Panamericano de Medicina Veterinaria y Zootecnia. Caracas, Venezuela pp. 818-823.
- 24. García y Santos C, Pereira R, Etcheberry G, Goyen JM, Pérez W, Capelli A, Alonso E, Ruiz-Díaz A, Riet-Correa F. (2012). Enzootic calcinosis caused by *Nierembergia rivularis* in sheep. J Vet Diagn Invest 24:423-426.
- García y Santos C, Sosa S, Capelli A, Pérez W, Domínguez R, Aldecoa C, Franco C, Moreira G. (2011). Osteolathyrism in Calves in Uruguay. En: F. Riet-Correa, J. Pfister, A.L. Schild and T.L. Wierenga. Poisoning by Plants, Mycotoxins and Related Toxins Ed. CAB International pp. 416-419.
- 26. García y Santos C, Pérez W, Capelli A, Rivero R. (2008). Intoxicación espontánea por *Myoporum laetum* en bovinos de Uruguay. Veterinaria (Montevideo) 43:25-29.
- 27. García y Santos C, Pereira R, Capelli A, Domínguez R, Bonino F, Goyen JM, Arago S. (2007). Intoxicación espontánea en ovinos por ingestión de *Solanum glaucophyllum (malacoxylon)* en Uruguay. XXXV Jornadas Uruguayas de Buiatría, Paysandú, Uruguay pp. 284-285.
- García y Santos C, Riet F. (2004). Intoxicaciones diagnosticadas en bovinos, en el laboratorio del Área de Toxicología de la Facultad de veterinaria, entre 1993 y 2003. XXXII Jornadas Uruguayas de Buiatría, Paysandú, Uruguay pp. 188-189.
- 29. Gastambide MV. (2011). Estudio de un brote de fotosensibilización en terneros y la comprobación experi-

- mental de toxicidad de *Setaria geniculata* y *Digitaria sanguinalis*. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Hollinger K, Ekperigin HE. (1999). Mycotoxicosis in food producing animals. Vet Clin North Am Food Anim Pract 15:133-165.
- 31. Iriarte M.E, Lauber MN, Mattos JJ. (2011). Estudio de la toxicidad de *Phytolacca dioica* (ombú) en ovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- 32. Lafluf O, Termezana A, Rivero R, Riet Alvariza F, Feed O, Feola R, Díaz L, Giménez G, Varela A, Cramino A, Uriarte G. (1989). Un caso de aflatoxicosis en bovinos asociado a maíz carbonoso. XVII Jornadas Uruguayas de Buiatría, Paysandú, Uruguay Sección ce 8, pp. 1-8.
- Mallmann CA, Santurio JM, Wentz I. (1994). Aflatoxinas-Aspectos clinicos e toxicológicos em suínos. Cienc Rural 24:635-643.
- 34. Menéndez C, Suárez LA, Vargas G. (2013). Investigación sobre la potencial toxicidad de *Baccharis ochracea* (mío-mío blanco) en bovinos. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Monroy I, Preliasco M. (2008). Investigación sobre la toxicidad de *Senecio grisebachii* en bovinos del Uruguay. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Moraes J, Zanoniani R. (2007). Síndrome tremorgénico en novillos Holando pastoreando Raigrás anual (*Lolium multiflorum*). En: Verdes JM, Moraña A, Riet-Correa F y col. Neuropatología y Neurotoxicología en rumiantes. v.1 Montevideo, Imprenta GEGA S.R.L. pp. 87-91.
- 37. Moraes J, Rivero R, Pereira D. (1993). Meteorismo espumoso. En: Riet-Correa F, Méndez MC, Schild AL. Intoxicações por plantas e micotoxicoses em animais domésticos. Montevideo, Ed. Hemisferio Sur pp.170-178.
- Odini A., Rivero R, Riet-Correa F, Méndez MC, Giannechinni E. (1995). Intoxicación por *Nierembergia hi-ppomanica* en bovinos y ovinos. Veterinaria (Montevideo) 31:3-8.
- Odriozola E. (2003). Intoxicaciones de frecuente diagnóstico en la Pampa Húmeda, Argentina. XXXI Jornadas Uruguayas de Buiatría, Paysandú, Uruguay pp.19-25.
- 40. Peers FG, Gilman GA, Linsell CA. (1976). Dietary aflatoxins and human liver cancer. A study in Switzerland. Int J Cancer 17:167-176.
- Peixoto PV, Barros CSL. (1998). A importância da necropsia em medicina veterinária. Pesq Vet Bras 18:132-134.
- Perdomo E, Paullier C. (1986). Enfermedades que afectan el sistema nervioso central. En: Bonino Morlán J, Durán del Campo A, Mari JJ. Enfermedades de los lanares. Vol. III Montevideo, Ed. Hemisferio Sur. pp. 143-172.
- 43. Pereira R, Capelli A, Dominguez R, Arago S, Pérez W, Alonso E, García y Santos C. (2007). Intoxicación espontánea por ingestión de *Lathyrus hirsutus* en terneros del Uruguay. V Jornadas Técnicas de Veterinaria. Facultad de Veterinaria, Montevideo, Uruguay pp. 74.
- 44. Podestá M, Tórtora JL, Moyna P, Izaguirre PR, Arrillaga B, Altamirano J. (1977). Seneciosis en bovinos: Su

- comprobación en el Uruguay. Veterinaria (Montevideo) 64:97-112.
- 45. Riet Alvariza F, García y Santos C, Collazo S, Sequeira E, Martino P. (2000). Casos clínicos de intoxicación por el hongo *Pithomyces chartarum* en bovinos en los años 1998 y 1999. XXI World Buiatric Congress, Punta del Este, Uruguay p. 109.
- Riet Alvariza F, Perdomo E, Paullier C, Le Bars J, Uriarte G, Algorta E, Andrade W, Berreta JJ, Collazo S, Alonso T. (1987a). Micotoxicosis asociada a tallarín de remolacha. XVII Jornadas Uruguayas de Buiatría, Paysandú, Uruguay, Sec cc 3, p. 1-9.
- Riet Alvariza F, Perdomo E, Capano F, Collazo S, Morón C. (1987b). Cuadros de asoleamieno en bovinos asociados al hongo *Claviceps pupurea*. IV Congreso Nacional de Veterinaria, Montevideo, Uruguay. Mimeografiado.
- 48. Riet Alvariza F, Rodríguez J, Le Bars J, Perdomo E, Paullier C, Uriarte G, Monteiro C, Collazo S, Abdala J, Alonso T. (1986). Cuadro tremorgénico en bovinos producido por hongos de los géneros Penicillium y Aspergillus productores de patulina aislados de un polvo de desecho de molienda de malta (cáscara de cebada). XVI Jornadas Uruguayas de Buiatría, Paysandú, Uruguay Sección cc 7, pp. 1-9.
- Riet Alvariza F, Moyna P, Del Puerto O, Perdomo E, Baraibar M, Parada H, Pasquariello. (1979). Intoxicación por duraznillo negro en el bovino. VII Jornadas Uruguayas de Buiatría, Paysandú, Uruguay. Sección cc 3, pp. 1-8.
- 50. Riet Alvariza F, Riet-Correa F, Perdomo E, Corbo M, Del Puerto O, Moyna P, Altamirano J, Meny H, McCosker P. (1977a). Fotosensibilización hepatógena en bovinos asociada a la ingestión de *Echium plantagineum* L. V Jornadas Uruguayas de Buiatría. Paysandú, Uruguay, Sección ii, pp. 1-11.
- 51. Riet Alvariza F, Riet-Correa F, Corbo M, Meny H, Salúa S, McCosker P. (1977b). Síndrome nervioso en bovinos producido por la ingestión de pasto bermuda (*Cynodon dactylon*). Veterinaria (Uruguay) 64:89-95.
- 52. Riet Alvariza F, Riet-Correa F, Corbo M, Perdomo E, McCosker P. (1976). Síndrome nervioso en bovinos causado por el hongo *Claviceps paspali*. Veterinaria (Uruguay) 12:82-89.
- 53. Riet Alvariza F, Corbo M, Meny H, Puerto del O, Mc-Cosker P. (1975). Fotosensibilización primaria en ganado lechero asociada con *Ammi majus* (cicuta negra). III Jornadas Uruguayas de Buiatría. Paysandú, Uruguay Sección cc, pp. 1-5.
- 54. Riet Alvariza F, Dias LE. (1974). El hongo *Pithomyces chartarum* asociado con casos de fotosensibilización hepatógena en bovinos. II Jornadas Uruguayas de Buiatría, Paysandú, Uruguay Sección cc, pp. 1-8.
- Riet-Correa F, Rivero R, Odriozola E, Adrien ML, Medeiros RM, Schild AL. (2013). Mycotoxicoses of ruminants and horses. J Vet Diagn Invest 25(6):692-708.
- Riet-Correa F, Barros SS, Méndez MC, Gevehr-Fernandes C, Pereira Neto OA, Soares MP, McGavin MD. (2009). Axonal degeneration in sheep caused by the ingestion of *Halimium brasiliense*. J Vet Diagn Invest 21:478–486.
- 57. Riet-Correa F, Medeiros RMT. (2000). Toxic plants

- for ruminants in Brazil and Uruguay: economic impact, control measures and public health implications. XXI World Buiatric Congress, Punta del Este, Uruguay pp.11.
- 58. Riet-Correa F, Rivero R, Dutra F, Méndez MC. (1996). Intoxicaciones en rumiantes en Rio Grande del Sur y Uruguay. VI Congreso Nacional de Veterinaria, Montevideo, Uruguay, Formato electrónico.
- Riet-Correa F. (1993). Intoxicação por Festuca arundinacea. En: Riet-Correa F, Méndez MC & Schild AL. Intoxicações por plantas e micotoxicoses em animais domésticos. Montevideo, Ed. Hemisferio Sur pp. 240-245.
- 60. Riet-Correa F, Méndez MC. (1992). Introducción al estudio de las plantas tóxicas. Veterinaria (Montevideo) 28:24-27.
- Riet-Correa F, Riet Alvariza F, Schild AL, Méndez MC. (1987). Plantas tóxicas para bovinos en el Uruguay y Río Grande del Sur. XV Jornadas Uruguayas de Buiatría, Paysandú, Uruguay Sección G, pp. 1-20.
- Riet-Correa F, Riet-Correa I, Bellagamba C. (1975).
 Calcificación metastásica enzoótica (enteque seco) en bovinos del Uruguay. Veterinaria (Montevideo) 60:15-23.
- 63. Rivero R, Riet-Correa F, Dutra F, Matto C. (2011a). Toxic Plants and Mycotoxins Affecting Cattle and Sheep in Uruguay. En: F. riet-Correa, J. Pfister, A.L. Schild and T.L. Wierenga. Poisoning by Plants, Mycotoxins and Related Toxins Ed. CAB International pp. 25-34.
- 64. Rivero R, Gianneechini E, Matto C, Gil J. (2011b). Intoxicación por *Lantana camara* en bovinos y ovinos en Uruguay. Veterinaria (Montevideo) 47:29-34.
- Rivero R, Adrien L, Matto C, Novoa F, Uriarte G, Charbonier D. (2010). Intoxicación por *Wedelia glauca* en bovinos en Uruguay. Veterinaria (Montevideo) 46:39-45.
- 66. Rivero R, Zabala A, Gianneechini E, Gil J, Moraes J. (2001). *Anagallis arvensis* poisoning in cattle and sheep in Uruguay. Vet Hum Toxicol 43:27-30.
- Rivero R, Moraes J, Chiossoni M. (1993). Intoxicação por *Cichorium intybus*. En: Riet-Correa F, Méndez MC, Schild AL. Intoxicações por plantas e micotoxicoses em animais domésticos. Montevideo, Ed. Hemisferio Sur pp. 179-183.
- 68. Rivero R, Feed O. (1993). Intoxicação por *Ipomoea batata* contaminada por *Fusarium solani*. En: Riet-Correa F, Méndez MC, Schild AL. Intoxicações por plantas e micotoxicoses em animais domésticos. Montevideo, Ed. Hemisferio Sur pp. 195-199.
- Rivero R, Quintana S, Féola R, Haedo F. (1989). Principales enfermedades diagnosticadas en el área de influencia del laboratorio de Diagnóstico Regional Noroeste del C.I. Vet. Miguel C. Rubino. XVII Jornadas Uruguayas de Buiatría, Paysandú, Uruguay, Sección I, pp. 1-73.
- Sosa S. (2015). Intoxicación espontánea en bovinos por frutos de *Xanthium cavanillesii* (abrojo grande) en un silo de sorgo. Tesis de grado, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
- Sundlof SF, Strickland C. (1986). Zearalenona and zeranol: potencial residue problems in livestock. Vet Hum Toxicol 28:242-250.
- 72. Tokarnia CH, Dobëreiner J, Peixoto PV. (2000). Plantas Tóxicas do Brasil. Rio de Janeiro, Ed. Heliantos p. 310.

- 73. Verdes JM, Moraña JA, Gutiérrez F, Battes D, Fidalgo CG, Guerrero F. (2006). Cerebellar degeneration in cattle grazing *Solanum bonariense* ("Naranjillo") in Western Uruguay. J Vet Diagn Invest 18:299 303.
- 74. Whitlow LM, Hagler WM. (2002). Mycotoxins in feeds. Feedstuffs 74:10.